Category Archives: Uncategorized

New research apiary

Our current research apiary is destined to be built over early in 2018 with a new road development. We’ve therefore been planning and preparing a new site – increasing our capacity for both bees, storage and working area.

The groundworks are now completed and it’s starting to look good.

Early December 2017

Early December 2017

Further updates will be posted in due course.

Polymerase fidelity and recombination paper in NAR

Nucl. Acid. Res.

Nucl. Acid. Res.

The fidelity of the virus polymerase influences the rate of genetic recombination between viruses coinfecting the same cell. We used cell-based and new, biochemically-defined, assays to demonstrate that the viral polymerase is necessary and sufficient for the strand-transfer event of RNA virus recombination. Furthermore, the fidelity of the polymerase is critical in determining the efficiency with which recombination occurs; low fidelity polymerases exhibit high recombination rates, and vice versa.

The paper is published in Nucleic Acids Research:

Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination 
Andrew Woodman; Jamie J. Arnold; Craig E. Cameron; David J. Evans
Nucleic Acids Research 2016; doi: 10.1093/nar/gkw567

Abstract

Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3′ non-coding region we have further developed a cell-based assay (the 3′CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process.

Swarmtastic!

One of our colonies in the bee shed swarmed last week. The swarm ended up clustering around the entrance to the hive it had ‘escaped’ from. It was captured and rehoused successfully. The swarm in the picture is up to 5cm deep in places and probably contains 10-15,000 worker bees … and a single queen bee.

Swarmtastic!

Swarmtastic!

Swarming is the natural way that a honey bee colony ‘reproduces’. The old queen and all of the older foragers leave the hive to establish a new colony. The remaining workers raise a new queen from an egg or young larva in the original hive, so generating two colonies from one. Swarming usually occurs in late Spring or early Summer.

 

Hampshire BK autumn convention

Sparsholt College

Sparsholt College

I’m delighted to be talking at the Hampshire Beekeepers Association autumn convention at Sparsholt College this weekend. This is the first of several ‘winter talks’ to BKAs about our research on deformed wing virus and Varroa. Time permitting I hope to discuss some forthcoming studies on coordinated Varroa control that we’re doing with Alan Bowman (Aberdeen) and Fiona Highet (SASA) and that will shortly be featured in the Scottish Beekeeper. I was invited to talk at this event before accepting a post in St. Andrews … it’s a long way to travel. However, one of the advantages of flying to these events is I can’t be tempted by too many goodies from the trade stands 😉

PeerJ pre-print on sacbrood virus

We have recently submitted a paper to PeerJ on gene expression changes resulting from deformed wing virus and sacbrood virus infection. A pre-print of this manuscript can be viewed on the PeerJ website.

Manuscript authors and title

Ryabov EV, Fannon JM, Moore JD, Wood GR, Evans DJ. (2015Evolutionarily related Sacbrood virus and Deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate horizontal or vertical transmission of these virusesPeerJ PrePrints 3:e1749

Abstract

Sacbrood virus (SBV) and deformed wing virus (DWV) are evolutionarily related positive-strand RNA viruses, members of the Iflavirus group, which infect the honeybee Apis mellifera, but have strikingly different levels of virulence when transmitted orally. Honeybee larvae orally infected with SBV usually accumulate high levels of the virus, which halts larval development and causes insect death. In contrast, oral DWV infection at the larval stage usually causes asymptomatic infection with low levels of the virus, although high doses of ingested DWV could lead to DWV replicating to high levels. We investigated effects of DWV and SBV infection on the transcriptome of honeybee larvae and pupae using global RNA-Seq and real-time PCR analysis. This showed that high levels of SBV replication resulted in down-regulation of the genes involved in cuticle and muscle development, together with changes in expression of putative immune-related genes. In particular, honeybee larvae with high levels of SBV replication, with and without high levels of DWV replication, showed concerted up-regulated expression of antimicrobial peptides (AMPs), and down-regulated expression of the prophenoloxidase activating enzyme (PPAE) together with up-regulation of the expression of a putative serpin, which could lead to the suppression of the melanisation pathway. The effects of high SBV levels on expression of these immune genes were unlikely to be a consequence of SBV-induced developmental changes, because similar effects were observed in the honeybee pupae infected by injection. We suggest that the effects of SBV infection on the honeybee immunity could be an adaptation to horizontal transmission of the virus. Up-regulation of the expression of AMP genes in the SBV-infected brood may contribute to protection of the SBV virus particles in dead larvae from bacterial degradation. Suppression of the melanisation may also reduce the loss of infectivity of SBV in the larvae. Therefore it is possible that activation of AMP expression and suppression of melanisation could increase ability of SBV to be transmitted horizontally via cannibalization route. We observed no changes of AMPs and the melanisation pathway genes expression in the orally infected larvae with high levels of DWV replication alone. In the injected pupae, high levels of DWV alone did not alter expression of the tested melanisation pathway genes, but resulted in up-regulation of the AMPs, which could be contributed to the effect of DWV on the regulation of AMP expression in response to wounding. We suggest that the effects of single DWV infection on the expression of these immune-related genes could reflect evolutionary adaptations of DWV to vertical transmission. Up-regulation of AMPs is costly and suppression of melanisation may increase susceptibility to infections, therefore these changes may have negative impact on honeybee survival and, consequently, of the survival of DWV.

Pollinator pests and diseases

DWV symptoms

DWV symptoms

One additional output from our Insect Pollinators Initiative has been an LWEC PPN (Living With Environmental Change Policy and Practice Note) on How are pests and diseases affecting bee pollinators? (Note #17, March 2015). This was jointly written with Robert Paxton (Halle, Germany) and Giles Budge (National Bee Unit). Copies should be available from the LWEC website or directly from here.

Somerset BKA lecture day

DWV symptoms

DWV symptoms

I’m delighted to be sharing the programme with Michael Palmer and Celia Davies at the Somerset BKA lecture day this Saturday (21st February ’15). I’ll be adding a small bit of science to the day and no doubt benefiting significantly from their wealth of beekeeping expertise. It should be a very enjoyable event.

Update – it was a very enjoyable event.  Aside from a few audio problems with a misbehaving microphone a packed hall enjoyed two talks by Celia Davies on Summer and Winter Bees and A World of Scents and a further two from Michael Palmer on the Sustainable Apiary and Queen rearing. If you’ve not heard Michael talk about the importance of overwintering nucs for sustainable beekeeping then you should either try and catch him on his current UK tour or watch him deliver the talk at the National Honey Show on YouTube. I think I’ve heard the talk three times now and have learnt something new every time. All the talks – including our contribution on the science of Varroa and deformed wing virus – generated lots of questions and discussions. With thanks to Sharon Blake for the invitation and organisation of the day.

Honey gifts

The University of Warwick is 50 years old in 2015. As part of the 50th anniversary celebrations attendees at the launch event were given “goody bags” containing, amongst other things, a small jar of honey from hives kept on campus or in the neighbouring farmland. Each carried a small tag advertising the honeybee research conducted in our lab …

PLoS Biologue

PLoS Biologue

PLoS Biologue

Lily Berrin of PLoS Pathogens covered our research in her article What’s the Buzz on Bee Pathogens? written for the US National Honey Bee day on the 16th of August. The article provides a concise overview of papers on the parasites, fungi and viruses of honeybees that have been published in PLoS Pathogens.